Name: \qquad Date: \qquad Period: \qquad

Geometry 2.4 Parallel and Perpendicular Lines

For 1-2, graph the line y_{2} so that it meets the given requirements. Then write the equations for y_{1} and y_{2}.

1. $y_{1} \| y_{2}$ and y_{2} passes through $(0,3)$

Use slope-intercept form: $y=m x+b$
Equation for y_{1} \qquad

Equation for y_{2} \qquad Use point-slope form: $y-y_{1}=m\left(x-x_{1}\right)$
Equation for y_{2} \qquad
3. A parallelogram is a quadrilateral with opposite sides parallel to each other. Prove the figure to the right is a parallelogram by algebraically showing its opposite sides are parallel to each other.
Show the slope (m) of each line. $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$
Slope of $\mathrm{AB}=$ \qquad
Slope of DC = \qquad

Slope of $\mathrm{AD}=$ \qquad

Slope of BC = \qquad
\qquad Date: \qquad Period: \qquad
4. A right triangle is a triangle that has a right angle. Prove that the triangle below is a right triangle by algebraically showing it has a right angle. Show that AB is perpendicular to $\mathbf{B C}$ by showing that their slopes are perpendicular.

For 5-6, determine if the lines $y=f(x)$ and $y=g(x)$ are parallel using the table of values.

5. | x | $f(x)$ | $g(x)$ |
| :---: | :---: | :---: |
| 0 | 20 | 22 |
| 1 | 35 | 37 |
| 2 | 50 | 52 |
| 3 | 65 | 67 |
6.

x	$f(x)$	$g(x)$
0	5	10
1	7	15
2	9	20
3	11	25

For 7-10, write the equation of the line that passes through the point and is parallel or perpendicular.
7. Through $(-2,-5)$ and parallel to $y=x+3$

Use point-slope form: $y-y_{1}=m\left(x-x_{1}\right)$
8. Through $(1,-3)$ and perpendicular to $y=-x$

Use point-slope form: $y-y_{1}=m\left(x-x_{1}\right)$
9. Through $(4,5)$ and parallel to $y=\frac{1}{4} x-4$

Use point-slope form $y-y_{1}=m\left(x-x_{1}\right)$
10. Through $(0,-4)$ and perpendicular to $y=-\frac{3}{2} x+1$

Use point-slope form $y-y_{1}=m\left(x-x_{1}\right)$

