Geometry 2.4 Parallel and Perpendicular Lines

For 1-2, graph the line y_2 so that it meets the given requirements. Then write the equations for y_1 and y_2 .

1. $y_1 \parallel y_2$ and y_2 passes through (0,3)

Use slope-intercept form: y = mx + b

Equation for y_1

Equation for y_2 _____

2. $y_1 \perp y_2$ and y_2 passes through (-2,2)

Use slope-intercept form: y = mx + b

Equation for y_1

Use point-slope form: $y - y_1 = m(x - x_1)$

Equation for y_2

3. A parallelogram is a quadrilateral with opposite sides parallel to each other. Prove the figure to the right is a parallelogram by algebraically showing its opposite sides are parallel to each other.

Show the slope (m) of each line. $m = \frac{y_1 - y_2}{x_1 - x_2}$

Slope of AB = _____

Slope of DC = _____

Slope of AD = _____

Slope of BC = _____

4. A right triangle is a triangle that has a right angle. Prove that the triangle below is a right triangle by algebraically showing it has a right angle. Show that AB is perpendicular to BC by showing that their slopes are perpendicular.

For 5-6, determine if the lines y = f(x) and y = g(x) are parallel using the table of values.

5.

Х	f(x)	g(x)
0	20	22
1	35	37
2	50	52
3	65	67

) .	Х	f(x)	g(x)	
	0	5	10	
	1	7	15	

9

11

20

25

2

3

For 7-10, write the equation of the line that passes through the point and is parallel or perpendicular.

7. Through (-2, -5) and parallel to y = x + 3

Use point-slope form: $y - y_1 = m(x - x_1)$

8. Through (1, -3) and perpendicular to y = -x

Use point-slope form: $y - y_1 = m(x - x_1)$

9. Through (4, 5) and parallel to $y = \frac{1}{4}x - 4$

Use point-slope form $y - y_1 = m(x - x_1)$

10. Through (0, -4) and perpendicular to $y = -\frac{3}{2}x + 1$

Use point-slope form $y - y_1 = m(x - x_1)$

Name:	 Date:	Period: